Sains Malaysiana 54(1)(2025): 303-312

http://doi.org/10.17576/jsm-2025-5401-24

 

Inflation Properties in Count Data Distributions: A Three-Decade Bibliometric Analysis

(Sifat Inflasi dalam Agihan Data Bilangan: Suatu Analisis Bibliometrik Tiga Dekad)

 

RAZIK RIDZUAN MOHD TAJUDDIN* & NORISZURA ISMAIL

 

Department of Mathematical Sciences, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Received: 29 April 2024/Accepted: 7 October 2024

 

Abstract

Researchers have been proposing inflated models for count data since 1992, which was pioneered by Diane Lambert. In inflated models for count data, the inflation points commonly occurs either at zero and/or one. A comprehensive bibliometric analysis has been conducted to investigate how popular the studies on inflated models have been since 1992. A total of 724 documents have been retrieved from Scopus database, which include all types of documents and languages. The publications growth rate for the inflated count data models was 16.27%, proving that many researchers were attracted to this area of study. Majority of the documents were articles and written in English. One article published in the R Journal has obtained the most acceptance among the community as seen from the average number of citations each year. The United States of America may have been collaborating with lots of researchers from other countries but the University of São Paulo, Brazil has published the greatest number of documents related to the inflated count data models.

 

Keywords: Inflated models; one-inflated; zero-inflated; zero-one-inflated

 

Abstrak

Penyelidik telah mengemukakan model terinflasi untuk data bilangan sejak tahun 1992, yang dipelopori oleh Diane Lambert. Dalam model terinflasi untuk data bilangan, titik inflasi biasanya berlaku di sifar dan/atau satu. Analisis bibliometrik komprehensif telah dijalankan untuk mengkaji seberapa popular kajian mengenai model-model terinflasi sejak tahun 1992. Sejumlah 724 dokumen telah diperoleh daripada pangkalan data Scopus, yang merangkumi semua jenis dokumen dan bahasa. Kadar pertumbuhan penerbitan untuk model data bilangan terinflasi adalah 16.27%, membuktikan bahawa ramai penyelidik tertarik dengan bidang kajian ini. Sebahagian besar dokumen adalah artikel dan ditulis dalam Bahasa Inggeris. Satu artikel yang diterbitkan dalam R Journal telah mendapat penerimaan terbesar dalam kalangan komuniti seperti yang dapat dilihat daripada jumlah purata sitasi setiap tahun. Amerika Syarikat mungkin telah bekerjasama dengan banyak penyelidik dari negara lain tetapi Universiti São Paulo, Brazil telah menerbitkan jumlah dokumen terbesar berkaitan dengan model-model data bilangan terinflasi.

 

Kata kunci: Model terinflasi; satu-terinflasi; sifar-satu-terinflasi; sifar-terinflasi

 

REFERENCES

Anastasopoulos, P.C. & Mannering, F.L. 2009. A note on modeling vehicle accident frequencies with random-parameters count models. Accident Analysis & Prevention 41(1): 153-159.

Aria, M. & Cuccurullo, C. 2017. Bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics11(4): 959-975.

Arora, M. & Chaganty, N.R. 2021. EM estimation for zero-and k-inflated Poisson regression model. Computation 9(9): 94.

Arora, M., Rao Chaganty, N. & Sellers, K.F. 2021. A flexible regression model for zero-and k-inflated count data. Journal of Statistical Computation and Simulation 91(9): 1815-1845.

Aryuyuen, S., Bodhisuwan, W. & Supapakorn, T. 2014. Zero inflated negative binomial-generalized exponential distribution and its applications. Songklanakarin Journal of Science and Technology 36(4): 483-491.

Atkins, D.C. & Gallop, R.J. 2007. Rethinking how family researchers model infrequent outcomes: A tutorial on count regression and zero-inflated models. Journal of Family Psychology 21(4): 726.

Bertoli, W., Conceição, K.S., Andrade, M.G. & Louzada, F. 2019. Bayesian approach for the zero-modified Poisson–Lindley regression model. Brazilian Journal of Probability and Statistics 33(4): 826-860.

Bodhisuwan, R. & Kehler, A. 2021. The zero-inflated negative binomial-exponential distribution and its application. Lobachevskii Journal of Mathematics 42: 300-307.

Bodhisuwan, W., Samutwachirawong, S. & Payakkapong, P. 2018. The zero-inflated negative binomial-Erlang distribution: An application to highly pathogenic avian influenza H5N1 in Thailand. Songklanakarin Journal of Science & Technology 40(6): 1428-1436.

Böhning, D., Dietz, E., Schlattmann, P., Mendonca, L. & Kirchner, U. 1999. The zero-inflated Poisson model and the decayed, missing and filled teeth index in dental epidemiology. Journal of the Royal Statistical Society Series A: Statistics in Society 162(2): 195-209.

Brooks, M.E., Kristensen, K., Van Benthem, K.J., Magnusson, A., Berg, C.W., Nielsen, A., Skaug, H.J., Machler, M. & Bolker, B.M. 2017. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R Journal 9(2): 378-400.

Faroughi, P. & Ismail, N. 2017a. Bivariate zero-inflated generalized Poisson regression model with flexible covariance. Communications in Statistics-Theory and Methods 46(15): 7769-7785.

Faroughi, P. & Ismail, N. 2017b. Bivariate zero-inflated negative binomial regression model with applications. Journal of Statistical Computation and Simulation 87(3): 457-477.

Fávero, L.P.L. 2017. The zero-inflated negative binomial multilevel model: Demonstrated by a Brazilian dataset. International Journal of Mathematics in Operational Research 11(1): 90-106.

Finkelman, M.D., Green, J.G., Gruber, M.J. & Zaslavsky, A.M. 2011. A zero‐and K‐inflated mixture model for health questionnaire data. Statistics in Medicine 30(9): 1028-1043.

Gholiabad, S.G., Moghimbeigi, A., Faradmal, J. & Baghestani, A.R. 2021. A multilevel zero-inflated Conway–Maxwell type negative binomial model for analysing clustered count data. Journal of Statistical Computation and Simulation 91(9): 1762-1781.

Godwin, R.T. & Böhning, D. 2017. Estimation of the population size by using the one-inflated positive Poisson model. Journal of the Royal Statistical Society Series C: Applied Statistics 66(2): 425-448.

Hall, D.B. 2000. Zero‐inflated Poisson and binomial regression with random effects: A case study. Biometrics 56(4): 1030-1039.

Harrison, X.A. 2014. Using observation-level random effects to model overdispersion in count data in ecology and evolution. PeerJ. 2: e616.

Hassankiadeh, R.F., Kazemnejad, A., Fesharaki, M.G., Jahromi, S.K. & Vahabi, N. 2017. Assessment of length of stay in a general surgical unit using a zero-inflated generalized Poisson regression. Medical Journal of the Islamic Republic of Iran 31: 91.

Lambert, D. 1992. Zero-inflated Poisson regression, with an application to defects in manufacturing. Technometrics 34(1): 1-14.

Lin, T.H. & Tsai, M.H. 2013. Modeling health survey data with excessive zero and K responses. Statistics in Medicine 32(9): 1572-1583.

Min, Y. & Agresti, A. 2005. Random effect models for repeated measures of zero-inflated count data. Statistical Modelling 5(1): 1-19.

Ridout, M., Hinde, J. & Demétrio, C.G. 2001. A score test for testing a zero‐inflated Poisson regression model against zero‐inflated negative binomial alternatives. Biometrics 57(1): 219-223.

Saengthong, P., Bodhisuwan, W. & Thongteeraparp, A. 2015. The zero inflated negative binomial–Crack distribution: Some properties and parameter estimation. Songklanakarin J. Sci. Technol. 37(6): 701-711.

Tajuddin, R.R.M. 2023. Simpler estimators for k-flated Poisson distribution. Journal of Quality Measurement and Analysis 19(2): 31-43.

Tajuddin, R.R.M., Ismail, N. & Ibrahim, K. 2022. Estimating population size of criminals: A new Horvitz–Thompson estimator under one-inflated positive Poisson–Lindley model. Crime & Delinquency 68(6-7): 1004-1034.

Tajuddin, R.R.M., Ismail, N. & Ibrahim, K. 2021. Comparison of estimation methods for one-inflated positive Poisson distribution. Journal of Taibah University for Science 15(1): 869-881.

Tajuddin, R.R.M., Ismail, N., Ibrahim, K. & Bakar, S.A.A. 2022. A new zero–one-inflated Poisson–Lindley distribution for modelling overdispersed count data. Bulletin of the Malaysian Mathematical Sciences Society 45: 21-35.

Tasser, E., Walde, J., Tappeiner, U., Teutsch, A. & Noggler, W. 2007. Land-use changes and natural reforestation in the Eastern Central Alps. Agriculture, Ecosystems & Environment 118(1-4): 115-129.

Yale, C.P., Yoshizaki, H.T.Y. & Fávero, L.P. 2022. A new zero-inflated negative binomial multilevel model for forecasting the demand of disaster relief supplies in the state of Sao Paulo, Brazil. Mathematics 10(22): 4352.

Zamani, H. & Ismail, N. 2014. Functional form for the zero-inflated generalized Poisson regression model. Communications in Statistics-Theory and Methods 43(3): 515-529.

 

*Corresponding author; email: rrmt@ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next